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Kac-Moody algebras derived from linearisation systems using 
various reductions and extended to supersymmetry 
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$ International Centre for Theoretical Physics, Trieste, Italy 
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Abstract. The hidden symmetries in various integrable models are derived by applying a 
newly developed method that uses the Riemann-Hilbert transform in various reductions 
of the linearisation systems. The method is extended to linearisation systems with higher 
algebras and with supersymmetry. 

1. Introduction 

Hidden symmetries such as the recently discovered [l] Kac-Moody type, in mostly 
two-dimensional integrable models, have attracted considerable interest; since they 
are thought to be responsible for the infinite set of conserved currents in these models. 
The affine Kac-Moody algebra is defined as 

where TV'= T a O P  ( n  E Z) are the generators for the loop group 8 0 C [ - t ,  23. 
In this paper we shall study a method [2] for deriving these hidden symmetries 

from the linearisation system of various integrable models. The method will here be 
extended to systems with more complex algebraic structure and to supersymmetric 
cases. Such extensions therefore make it plausible that two-dimensional integrable 
models in general have associated an infinite parameter hidden symmetry. 

The method recently developed for finding the hidden symmetries will be reviewed 
in the next section. It goes briefly as follows: one starts with the linearisation system 
(i.e. the Lax pair) of the model under investigation. Next one finds a reduction system 
that together with the Frobenius consistency condition reproduces the equation of 
motion of the model. The global version of the Kac-Moody generators are the 
Riemann-Hilbert transformations [3] and once they are guaranteed to satisfy the 
reduction system they should leave the linearisation system invariant and their 
infinitesimal limit yields therefore the corresponding Kac-Moody algebra. 

In the following section we shall apply this technique to the Dodd-Bullough [4] 
equation. Originally the technique was applied to the sine-Gordon and the Liouville 
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models. Both are two-dimensional, integrable SU(2) systems. By extending the method 
to the Dodd-Bullough system which possesses an SU(3) symmetry and is a mixture 
of the two former models it then becomes clear how to extend the techniques to an 
arbitrary SU( N )  symmetry. Furthermore, we shall supersymmetrise the model in order 
to see how the method works in superspace and with a graded algebra structure. It 
might even be possible to extend the techniques to higher dimensions such as, for 
example, the case of the non-relativistic three-dimensional Kadomstov-Petviasvili 
equation. 

2. A method of deriving the hidden symmetries from linearisation systems 

In this section we shall review a method [2] proposed by Bohr et al, by which hidden 
symmetries can be derived from the Lax pair of integrable systems. The method was 
particularly intended for the simple two-dimensional models such as the sine-Gordon 
and the Liouville model. Before generalising the method to more complicated algebraic 
structures we shall first introduce the method in the simple case of the sine-Gordon 
equation. 

The strategy is the following. We start with a general Lax pair that can represent 
a class of two-dimensional integrable models and then find a reduction system that 
together with the usual Frobenius consistency conditions can reproduce the particular 
model we want. The reduction system is therefore applied to the linear wavefunction 
to yield the particular nonlinear equation we want. The Riemann-Hilbert transform 
gives an analytic continuation of the linear wavefunction in the A plane ( A  is the 
spectral parameter of the Lax pair). If we therefore apply the reduction system to the 
Riemann-Hilbert transform this should correspond to our particular model, i.e. the 
Riemann-Hilbert transform that obeys the reduction system should leave the particular 
Lax pair invariant. Finally the infinitesimal limit of the Riemann-Hilbert transform 
gives us the corresponding Kac-Moody algebra as a hidden symmetry. 

Let us illustrate this procedure by the sine-Gordon case. We start with a general 
linearisation system (or Lax pair): 

The Frobenius consistency condition is obtained by differentiating the first equation 
by y and the last by z and using compatibility d,a,+ = a,a,+: 

The reduction system we now choose is the following 

CT,I,~(A)U;' = $( -A) .  (3c) 

(In the next section we shall apply a more general scheme of reduction systems (see 
[5]), the so-called ZN, DN reduction groups.) 
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By applying the system (3) on the Lax pair in ( l ) ,  together with (2) we obtain (see 
[2]) uniquely the specific Lax pair for the sine-Gordon model 

a,+=L( 2A e-id O 
(4) 

Applying again the compatibility condition on (4) we obtain the sine-Gordon equation 

&a,+ = sin 4. 
We now apply the Riemann-Hilbert transform to the reduction system (3):  

The RH-transform x(A) is in general given by 

x+ and x- denote the analytic transformations inside and outside a contour C (in the 
complex A plane). We have introduced S as 

X + ( A )  =x-(A)S, S(A) = *(A)y(A)+(A)-' (7) 
where 4 is the wavefunction of A in ( 1 )  and y ( A )  a general matrix function. 

It can now be proven (see [2]) that if the RH-transform and y ( A )  obey (5) then it 
leaves the linearisation system invariant; which is rather obvious. 

From the constraints in (5) we can now easily derive the basis that spans the 
subalgebra of the X (  A )  transformations that leave the sine-Gordon invariant. First 
we go from the group elements to the algebra which in the infinitesimal limit becomes 
(8  small) 

y(h)=exp[i8(A)]= l+fI(A) 
m (8) 

8(A)= A V , .  
-W 

If y ( A )  should obey (5) then we obtain for the Laurent series above: 

Tr(e(A)) = 0 8: = ( - i )n+len 

(€!(A))*= -e(-X) a3enu3 = (-lye,  

a , B ( A ) a ,  = 8 ( - A )  

and the grading is obtained as powers of A. 
From (9) it follows that the 8 transformations can be expanded on the following basis 

8(A) =c  CKia3A2K +c C'Ka,h2K+'+Z C ' f c ~ ~ A ~ ~ + l .  (10) 
It is then clear that the particular Kac-Moody algebra that is infinite parameter for 
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the hidden symmetries of the sine-Gordon model is the following subalgebra: 

[ T,", T t ]  = eabcT;l+" 

m even 

m odd 

which is a subalgebra of the ordinary Kac-Moody algebra of the chiral model and 
has a special structure depending on whether the grading is even or odd. 

3. Extension to higher order Lax pair 

After the above introduction to the procedure of obtaining the hidden symmetries we 
here proceed to show how the same procedure can be effectively used to deduce the 
hidden symmetries in the case of nonlinear equations, associated with a N x N matrix 
Lax pair with N > 2. It has already been observed that it is possible to generate a 
family of nonlinear equations whose members are the sineGordon and Liouville 
equations. Such a system of equations is known as a generalised Toda system [ 51. The 
equation belonging to this hierarchy next to sine-Gordon is the Dodd-Bullough 
equation [4] which is known to be associated with a 3 x 3 Lax pair. In the following 
we show how our method is useful to extract the structure of the Kac-Moody algebra 
associated with such a 3 x 3 system, with the help of a reduction technique. Finally in the 
next section, we also consider the corresponding grade extension for the supersymmetric 
case. 

Let us consider the Lax pair of the form: 

The compatibility condition yields 

In (12) and (13) U,, U ,  and V,, V, are all assumed to be 3 x 3 matrices. 
Our initial problem is to deduce the Dodd-Bullough equation by imposing the 

reduction condition on the scattering problem (12). The general ansatz as elaborated 
in [5] reads in our case 

and 

with 

Qap = 8,pq" q = exp(2ni/ N)  N = 3 .  

Equation (14) yields 

Q-I U,Q = U, Q-' V,Q = v, 
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and 
0 ui Q = ui Q- ' VI Q = q-' VI 

The second part of the reduction condition yields 

tuot-' = -ub' 
cult-' = U: tV, t - '= vY. 

tvot-' = - vb' 

These equations lead to the following form of the matrices U and V: 
0 

0 0 0  

0 0 h ,  

with 

when used in the compatibility ( 1 3 )  these matrices lead to the equation 

0 X I  =e-* -e**  (18) 

if we choose 

a ,  = a01d.t. 

Finally the linear problem takes the form: 
o e'* o 

The next step to the Riemann-Hilbert transform is to define the wavefunction x(A) 
as in equation (6) and its analytic conditions x+ and x-, related through (7). Following 
the same line of reasoning as in [ 2 ]  it can be proved that the Riemann-Hilbert transform 
keeps the linear equation unaltered. So we can now proceed to set up  the conditions 
to be satisfied by the numerical matrix y ( A )  or its infinitesimal form B ( A )  and the 
wavefunction X (  A ), 

The conditions read 

and the corresponding reduction is known as D3 reduction. 
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Expanding the infinitesimal form of ? ( A ) ,  i.2. 8 ( A )  as @ ( A )  =z:,-, A"@, 

Q-'e,Q = q"6, 

t - 'e , t  = e:. 
The first condition of (21) yields 

Q - ' ~ ~ K Q  = 0 3 ~  

Q - ' ~ ~ K + I Q  = qe3K+l 

Q-' e 3 ~ + 2 Q  = @ 3 K  + 2  

where K is an integer. With the form of Q given before we can actually solve the set 
(22) and furthermore the imposition of the second condition yields the solutions in 
the following form 

e 3 K + 2  = ah3 

where p ,  r, d ,  h, a are arbitrary constants and E,' = A I  * iA2; Ei2 = A,*iA,; E+3 = 
A,*iA,  and A, are the Gell-Mann SU(3) matrices. So the final form of the Kac-Moody 
algebra can be presented in the form; 6(A) = X  8 3 K A 3 K  +X B3K+lA3K+'+z 
so that: 

Am(E+*, E-2, E+3) m = O  mod 3 
A "( E - ] ,  Ecz ,  E-3)  m = l  mod 3 
Am(aA3) m = 2  mod 3. 

4. Supersymmetric extensions 

Our next motivation is to obtain the Kac-Moody algebra for the hidden symmetries 
in the supersymmetric version of the Dodd-Bullough equation. We have chosen this 
particular case as it is sufficiently general to unfold the intricacies involved. The 
supersymmetric extensions of the generalised Toda system have been discussed in 
detail by Olshanetsky [ 6 ] .  Here it has been observed that if one has the following Lax 
pair 

D1*= U* D2* = v* (24) 
where 

D1 = -a,,+ie,a, D, = a,, + i&a, 

U =  Uo+AU1 V = A - ' V l  

are superderivatives and el,  O2 are the anticommuting coordinates. I) is the super 
wavefunction, with U and V also matrices depending on the supercoordinates, fields 
and the eigenvalue A. 

The compatibility now reads 

D,U+D,V={U,  V }  (26) 



Kac- Moody algebras 3429 

where {A, B} denotes anticommutator of two arbitrary matrices. It is easily seen that 
(25) leads to 

D1 VI = { U,, VI) 4 U0 = { Vl, UII. (27) 

Now to reproduce a particular nonlinear equation from (27) one takes-recourse to 
a particular super Lie algebra in which we assume the U and V to belong. For the 
case under consideration the Lie algebra in Kac's classification is A(4) (0,2) which 
have the generators E t ,  E ; ,  Hi following the following set of commutation rules: 

It is then obvious that we can write 

U,=zA, (x ,  t )H ,+cA; (x ,  t )E:+cA;(x,  t ) E ;  

U ,  =e B,(x, t ) ~ : - c  ~ j ( x ,  t )~ ,+z  B;(x, t)E,. 

VI = C  CJ(X, t ) E ; + C  Cj(X, t)H,+C CY(X, [ ) E ;  (29) 

Imposing the 2, reduction on the matrices U and V with the help of the matrix Q 
defined through 

Q(E:) = 4 - E :  Q(H,)  = H, Q(Ej-) = qE; (30) 

&=CA,(x,  t ) H ,  U' = c B J X ,  tw: v, =C CJ(X, ? ) E , .  (31) 

we observe that V,, U ,  and VI do possess the following decomposition 

Now using the compatibility equations (26) and the superalgebra (28) one can 
reproduce the following nonlinear equation known as the supersymmetric Dodd- 
Bullough equation 

e,, = -ee(ee++142)+es 41x = -2ee42 42x = -2es41 (32) 

where 0 and 4', 42 are, respectively, the bosonic and fermionic part of the superfield 
a. To explore the structure of the Kac-Moody algebra we again impose the restriction 
of the reduction condition on y ( A )  which now belongs to a graded Lie algebra. The 
analogue of condition (20) reads 

X ( A )  E ~ ( ~ ' ( 0 . 2 )  Q X ( A ) Q - '  = w )  q = elrr. (33) 

Taking recourse to the infinitesimal expansion of y ( A )  and using (33) we get 

Again the grading is obtained for different odd and even values of n. We can actually 
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solve these sets of equations; for example for n = 1 

O C O  

q O K O  
O n O p  

for n = 2  

10 b 0 d\ 

Similarly for other cases, a, c,fT g, etc are arbitrary constants. It is quite easy to observe 
that a,, a2, A,, A2 etc again belong to a particular subalgebra of the A(4) ( 0 , 2 )  [8]. 

In order to obtain an explicit representation of R I  and f12 we note that the super 
Lie algebra SU(311) or A(4) ( 0 , 2 )  has got the following generators in the explicit 
form [8]; 

where A i  are the usual SU(3)-Gell-Mann matrices 

and 
a = 1 , 2 , 3 ,  no summation is implied over a. 

= a",; where a, b indicates the rows and columns (a,  b = 1,. . . , 4 )  and 

Finally, 

P = (P" IT. (40) 

So in total we have eight P I ,  one Pn, three Pea and three Po" in a total of fifteen generators. 
Now it is very easy to observe that 

= f c ( ~ 5 + i ~ 4 ) + i q ( ~ 5 - i ~ 4 ) + n ~ 2 2 + q ~ ~ ~ + ( 3 a ) ~ ' ~ ~ s + 2 ~ ~ n  + Y P ~ .  (41 1 

So in this case the subalgebra consists of the generators; T," ( m  = 1, a = 1 , .  . . , 7 )  

T: = P 8  T i  = P n  

T: = f(P5 - $4) 

Ti = P 2 2  T: = p22 
(42) 

T: = P3 

Y = f ( a - f) ; 

T:, = f ( P 5 +  iP4) 

where a, 6, y are connected to a,L  K,  p by some simple linear relations 

8 = -1 3 9  a = - i (K-fp) .  
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In the other case; 

02= d ~ l l + n ~ ” + ~ b ( ~ l + i ~ 2 ) + ~ e ( P ,  -iP2) 
+tg(P6+iP7)+Sj(P6-iP7)+ eP33+ KP33. 

So this time the subalgebra consists of the following generators; 

( T ? , m = 2 , a = l ,  . . . ,  8) 

T: = P 3 3  
T2- T: = PI1 2 -  

Ti = /333 T2-1 5 - 2 ( P 1  +iPA T;=t(Pl- iPd 

(43) 

(44) 

T: = ;( P6 + iP7) Ti = i(P6 - iP7) 

So even in the supersymmetric nonlinear case it is possible to have an explicit realisation 
of the graded Kac-Moody generators. 

5. Conclusion 

In this paper we have given a detailed exposition of a concrete method to derive hidden 
symmetries from linearisation systems of various integrable models. Since here we 
were able to cover a wider range of integrable systems with more completed algebraic 
structure and with supersymmetry one is led to believe that all two-dimensional 
integrable models could have an infinite parameter hidden symmetry of the Kac-Moody 
type. One should think that parts of the method can be carried over to higher 
dimensional integrable models. Take for example the three-dimensional Kdv equation 
(the Kadomstev-Petviashvili equation). Here we also find a reduction system [7] and 
our method here seems also to work with such a reduction system. However, since 
such a reduction system has no explicit A dependence which can only be recovered 
in the asymptotic limit ,y+co, it is necessary to prove the group property on the 
scattering data rather than on the wavefunction. 
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